跳至主要內容

光速可变理论

LincZero大约 10 分钟

光速可变理论

主要参考:

  • wiki-光速不变原理:https://zh.wikipedia.org/wiki/%E5%85%89%E9%80%9F%E4%B8%8D%E5%8F%98%E5%8E%9F%E7%90%86
  • wiki-光速可变理论:https://zh.wikipedia.org/wiki/%E5%85%89%E9%80%9F%E5%8F%AF%E8%AE%8A%E7%90%86%E8%AB%96

个人观点

  • 我个人光速不变理论只是 “公设”,并不就是定理。并不至于奉为圭臬
  • 同时,我也奉承 “最佳解释原则”,多个理论框架都能解释事实的情况下,哪个最为简洁、准确、泛用,哪个就是更好的。 就当前来看,光速不变理论仍是主流,而光速可变会有很多问题,详见文章最后的 “对光速可变理论的批判”

光速不变理论

要知道什么是光速可变理论,应该先了解目前物理学界所基于的光速不变理论

光速不变原理是狭义相对论两个基础公设之一(另一个是相对性原理)

可实验证明,但无法由更底层的东西推导,所以才是 “公设

光速可变理论 - 尝试、学说

在经典物理学中,真空中的光速是一个常数,在国际单位制中被定义为c=299792458米/秒。经典物理学中光速可变可以在某些情形下出现,比如一些已确立理论的等价公式中,再如大多数非主流的引力和宇宙学理论里。著名的光速可变说包括爱因斯坦1911年的理论、罗伯特·迪克1957年的理论以及1980年代后期几名研究者的理论。因为这些理论与广泛接受的学说相冲突,光速可变理论具很大争议性

爱因斯坦1911年的尝试

爱因斯坦1911年的尝试

  • 1907: 爱因斯坦在1907年着手研究光速可变

  • 1911: 他在1911年更深入的探讨了这个观点。[2]在介质中,较短的波长 λλ 因为 c=νλ\displaystyle c=\nu \lambda 而导致其传播速度更慢。与此类似,爱因斯坦假设引力场中的时钟更慢,其对应的频率 ν{\displaystyle \nu } 受到引力势能的影响(公式2,p.903): ν1=ν2(1+GMrc2){\displaystyle \nu _{1}=\nu _{2}(1+{\frac {GM}{rc^{2}}})}

    爱因斯坦说:

    “Aus dem soeben bewiesenen Satze, daß die Lichtgeschwindigkeit im Schwerefelde eine Funktion des Ortes ist, läßt sich leicht mittels des Huygensschen Prinzipes schließen, daß quer zum Schwerefeld sich fortpflanzende Lichtstrahlen eine Krümmung erfahren müssen.(因为光速是位置的函数,从惠更斯原理可以推出沿和引力场垂直方向上前进的光线必然会发生偏转。) ”

  • 1912: 在一篇1912年的论文中,[3]他总结道:

    “Das Prinzip der Konstanz der Lichtgeschwindigkeit kann nur insofern aufrechterhalten werden, als man sich auf für Raum-Zeitliche-Gebiete mit konstantem Gravitationspotential beschränkt.(光速恒定原理仅在引力势能恒定的特定时空区域中成立。) ”

    但是,爱因斯坦推导出在太阳附近的光线偏转为“将近一弧秒”,仅为后来其广义相对论得到正确数值的一半。

  • 1919: 爱丁顿的测量验证了广义相对论的预测结果。但是爱因斯坦却因其它原因放弃了光速可变理论。值得注意的是,他在1911年仅考虑了时间可变。在广义相对论中,在不同的理论语境下,空间和时间的测量都可能受到附近质量的影响。

迪克1957年的尝试和马赫原理

1957年罗伯特·迪克提出了一种光速可变的引力理论。[4]和爱因斯坦不同的是,迪克假设不仅光的频率会变,其波长也会改变。因为 c=νλ{\displaystyle c=\nu \lambda },因此迪克理论中c的相对变化是爱因斯坦推导出的两倍。迪克假定折射率 n=cc0=1+2GMrc2{\displaystyle n={\frac {c}{c_{0}}}=1+{\frac {2GM}{rc^{2}}}}(公式5)并证明此公式同光偏转的观测值一致。在一篇与马赫原理相关的评论中,Dicke指出公式5中的右边那项很小,左边的1也许“起源于宇宙中的其他物质”。

在一个视界不断膨胀的宇宙中,越来越多的质量对折射率有贡献,因此迪克认为宇宙中c随时间而减慢,这给宇宙学的红移提供了一个另一个解释(p. 374)。[4]应当指出的是,迪克的理论同国际单位制中的定义 c=299792458m/sc=299792458m/s 并无冲突,因为时间(秒)和长度(米)单位和皆可以变化(p. 366)。

其它与爱因斯坦和迪克理论有关的光速可变尝试

虽然迪克提出了广义相对论的替代理论,光速随空间变化的概念并不违反广义相对论。其实这个概念隐含在广义相对论的坐标空间描述中。若干教科书中曾提及,比如威尔[5]书中的公式6.14和6.15,以及温伯格[6]书中的公式9.2.5( ϕ{\displaystyle \phi } 代表引力势能 GM/r-GM/r):

“...注意光子速度是... $${\displaystyle |u|=1+2\phi +O(v^{3})}$$”

根据这个公式,有人提出了与广义相对论所有已知测试结果相一致的光速可变模型,[7]但在高阶测试中仍有些差别。[8]还有的模型声称能够解释等效原理,[9]或者与狄拉克的大数假说有关联。

作为宇宙膨胀替代理论的现代光速可变理论

为了解释宇宙学中的视界问题并找到能解释宇宙膨胀的新理论,让-皮埃尔·伯蒂特于1988年、[11][12][13][14]约翰·莫法特于1992年[15]以及二人小组安德烈亚斯·阿尔布雷克特和若昂·马盖若于1998年[16][17][18][19][20][21]独立的提出了光速可变宇宙学理论。胡安·卡萨多等人也建立了一种新型的光速可变宇宙学模型。[22]

在伯蒂特等的理论中,所有物理学常数协同变化而导致时间和空间标度因子的变化与c的变化同时发生。因此所有物理方程和物理常量在宇宙的演化中保持不变。爱因斯坦场方程因爱因斯坦常数中c和G的同时变化而保持不变。后来的模型将物理常量的变化限制在宇宙早期的更高能量密度,比如在辐射主控时期的起始阶段,那时的时空等同于度椝共形平直的空间-熵。[23][24]值得注意的是,虽然这是第一个公开发表、至今唯一一个不用改写现代物理学公式的光速可变模型,伯蒂特等的论文在后世的光速可变文献中很少得到引用。

莫法特和阿尔布雷克特-马盖若二人组理论之要义是在早期宇宙中光速可以是现在的1060倍,因此膨胀中宇宙的遥远区域在宇宙开始时曾有时间相互所用。通过改变精细结构常数,视界问题目前尚无已知的解法,因为其变化并不改变时空的因果结构。若要改变此因果结构,则必须通过变化牛顿引力常数或重新定义狭义相对论来变更引力。历史上,光速可变宇宙学为了绕过这一阻碍,提出以某种特定方式变化量纲量c以打破爱因斯坦的广义及狭义相对论中的洛伦玆不变性。[25][26]现代理论则保持了局域洛伦玆不变性。

其他的光速可变理论

虚光子

光子速度变化

量子理论中的光子open in new window速度变化

对光速可变理论的批判

无量纲量和量纲量

因为量纲量会根据选择不同的单位而变化,有人曾试图说明这种量变化的实际意义。比如约翰·贝洛曾写到:

“我们从像精细结构常数α一样的纯数字界定这个世界中学到的重要一课是,它对于不同世界的含义是不同的。我们称为精细结构常数、以α表示的纯数字,是基本电荷e、光速c和普朗克常数h的组合。起先我们也许会想一个拥有较慢光速的世界也许会是个不同的世界。但这会是个错误。如果c、h和e都发生了变化,它们以公制(或其他制)为单位的数值不同于我们在我们的物理常量表中查到的数值,但α的值仍是一个常数,那么这个新的世界在观测上将和我们的世界无法区分。在世界的定义上唯一重要的事情是自然无量纲常数的值。如果所有的质量都加倍(包括普朗克质量mP),你不会察觉,因为任何质量比得到的纯数值没有改变。”

任何物理定律的公式都可以通过量纲的对消而只剩下无量纲量,这被称为无量纲化。另外,物理学者可以通过选择单位使得物理常量c、G、ħ=h/(2π)、4πε0和kB数值为1,每一个物理量都可以以自己对应的普朗克单位归一化。因此,有人认为阐明一个量纲量的演化毫无意义。[41]当物理定律的公式使用普朗克单位、无量纲化之后,具有量纲的物理常量如c、G、ħ、ε0和kB都不存在了。依照假定单位而变化的引力常数G,其相对应的无量纲量最终会变成普朗克质量和基本粒子质量的比值。某些与光速相关的重要无量纲量,比如精细结构常数和质子电子质量比,其变化是有意义的,仍然被研究所关注。[42]

和c之定义的关系

对可变光速理论而言,如果国际单位制中米的定义回归其1960年代以前的定义,即国际米原器的话,测定到的光速就会根据国际米原器长度的变化而变化。那么c的变化就等于国际米原器与普朗克长度的无量纲比值的变化,或者国际单位制中秒同普朗克时间的无量纲比值的变化,或两者兼而有之。如果构成国际米原器的原子数量保持不变(稳定的原型尺应当如此),那么c的变化就等于普朗克长度与原子玻尔半径的无量纲比值的变化,或者普朗克时间同一个铯-133原子震动周期的无量纲比值的变化,或两者兼而有之。

对光速可变宇宙学的批评

乔治·埃利斯曾担忧变化的光速将导致大部分现代物理学不得不重写,因为现存体系基本上建立于光速不变的基础上。埃利斯称,任何光速可变理论:

  1. 必须重新定义距离的测量
  2. 必须给出广义相对论中度规张量的新表达式
  3. 也许和洛伦玆不变性相冲突
  4. 必须修改麦克斯韦方程
  5. 必须和其他物理理论保持一致。

这些判据是否适用于爱因斯坦1911年的理论和迪克1957年的理论尚有争议。可变光速宇宙学仍然属于非主流物理学**。